3.6.83 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx\) [583]

3.6.83.1 Optimal result
3.6.83.2 Mathematica [A] (verified)
3.6.83.3 Rubi [A] (verified)
3.6.83.4 Maple [A] (verified)
3.6.83.5 Fricas [F(-1)]
3.6.83.6 Sympy [F(-1)]
3.6.83.7 Maxima [F]
3.6.83.8 Giac [F]
3.6.83.9 Mupad [F(-1)]

3.6.83.1 Optimal result

Integrand size = 23, antiderivative size = 75 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d}+\frac {2 a^2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d} \]

output
2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/ 
2*c),2^(1/2))/b/d-2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli 
pticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d+2*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/b^2/( 
a+b)/d
 
3.6.83.2 Mathematica [A] (verified)

Time = 10.40 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.08 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=-\frac {2 \left (b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-(a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+a \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b^2 d \sqrt {\sin ^2(c+d x)}} \]

input
Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x]),x]
 
output
(-2*(b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSi 
n[Sqrt[Cos[c + d*x]]], -1] + a*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x] 
]], -1])*Sin[c + d*x])/(b^2*d*Sqrt[Sin[c + d*x]^2])
 
3.6.83.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 3283, 3042, 3119, 3282, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3283

\(\displaystyle \frac {\int \sqrt {\cos (c+d x)}dx}{b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}\)

\(\Big \downarrow \) 3282

\(\displaystyle \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \left (\frac {\int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \left (\frac {\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )}{b}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}\right )}{b}\)

input
Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x]),x]
 
output
(2*EllipticE[(c + d*x)/2, 2])/(b*d) - (a*((2*EllipticF[(c + d*x)/2, 2])/(b 
*d) - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d)))/b
 

3.6.83.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3282
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[d/b   Int[1/Sqrt[c + d*Sin[e + f*x]], x], x 
] + Simp[(b*c - a*d)/b   Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 
 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3283
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[b/d   Int[Sqrt[a + b*Sin[e + f*x]], x], x 
] - Simp[(b*c - a*d)/d   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b 
^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 
3.6.83.4 Maple [A] (verified)

Time = 4.18 (sec) , antiderivative size = 227, normalized size of antiderivative = 3.03

method result size
default \(\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-a^{2} \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(227\)

input
int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)
 
output
2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))*a^2-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))*a*b-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-a^2*El 
lipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/b^2/(a-b)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/ 
2*c)^2-1)^(1/2)/d
 
3.6.83.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")
 
output
Timed out
 
3.6.83.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)
 
output
Timed out
 
3.6.83.7 Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)
 
3.6.83.8 Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)
 
3.6.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{a+b\,\cos \left (c+d\,x\right )} \,d x \]

input
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x)),x)
 
output
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x)), x)